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III. METHOD OF MOMENTS SOLUTION FOR .. BODY OF REVOLUTION

In this section, a method of moments solution to (9) and (10) is
developed for a homogeneous loss-free body of revolution. Special cases of
(9) and (10) are the PMCHW equations (18) and (19) and the Miiller equations
(24) and (25).

For compatibility with equation (40) on page 14 of [9], we rewrite
(9) as

(30)

where tan denotes tangential components on S and e is given by (29). The
fields on the left-hand sides of (30) and (10) are written as the sum of
fields due to J and fields due to M. Advantage is taken c¢f the fact that
the operator which gives the electric field due to a magnetic current is
the negative of th2 operator which gives the magnetic field due to an
electric current and that the operator which gives the magnetic field due
to a magnetic current is the square of the reciprocal of the intrinsic
impedance times the operator which gives the electric field due to an

electric current. In view of the above considera:ions, (30) and (10) be-

come
1 I8 o= a 5y BAO
ot D Rl L Bt W0l A IR (31)
e e e e e
- 5 1 * 8 4 i
SRS PR TIL0) ¢ S Re) ca K (32)
e d

where E denotes the operator which gives the electric field due to an

electric current. The subscript e or d on E denotes radiation in either
ue' ce
evaluation either just outside S or just inside S. The H's in (31) and

or ud, sd. The superscript + or -, if present on E, denotes field

(32) are the corresponding magnetic field due to electric current ope’ ators.

We stress that all g:s and ﬂfs in (31) and (32) are, by definition, o erators
which give electric and magnetic fields due to electric currents, eve though

these operators act on both electric and magnetic currents J and M in (31)
and (32).
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Let

« N

: by 25 ik o
M = 020 'f L G L (34)
- Sl S o 4oy MO w)imd

where It » I¢ - V: , and V¢ are coe ficients to be determine | and
nj’ "nji’ nj nj

i jné

Jj = Btfj(t)e (35)
¢ _ jn¢
gnj = 2¢fj (t)e (36)

In (35) and (36), t is the arc length along the generating curve of the body

body of revolution and ¢ is the longitudinal angle. Y, and u, are unit

.u¢

vectors in the t and ¢ directions respectively such that Yy x u =na d
fj(t) is the scalar function of t defined on page 10 of [9]. The body of

revolution and coordinate system are shown in Fig. 6. Substitution of
(33) and (34) into (31) and (32) yields

N
st L ¢ ¢
I L {aany + Q) g oy + GoGEE) + aigatny v

n=-o j=1 j nj nj tan ﬂj
an ¢ ¢
- A (Jnj)) tosteny’ M RY L)) ¢ 1oL gl
Ne ne ny4 tan nj ng Ng N4 tan rj Ne -t
(37)
= N (E@S) 8n =5 E@%) n E, J%)
- 2 2{(@%L+ e~d~n_])vt+ e-nj+ e_:_«dmj)v¢+
n=-» j=]1 e 4 N4 nJ e N4 4 nj
L - + t t ¢ ) 1
(Ee(gnj) ¥ Bﬂd(g‘nj))lnj +* (H (J j) + BH (J ))I j} kB | (38)

Define the inner product of two vector functions on S to be the
integral over S of the dot product of these two vector functions. Because

the field operators in (37) and (38) are the same as those considered in (9],
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only the nth term of the sum (37) or (38) contributes to the inne product
of (37) or (38) with either J ni °F 1gni' llence, the inner produ:t of (37)
with J sy i=1 2,...N and I¢ ni’ i=1,2,...N, successively and thc¢ inner pro-
duct of (38) with J° ., i=1,2,...N, and g% , i=1,2,...N, successively gives

the matrix equation

i b an an ar 3 -+ 7
(Y“ ¥ aY¢t) (0% + ot (2t ¢ =42 (2t 4 th| ¥t ‘"
ne nd ne ne nd ne ne nd n n
i
an an {

(-Y:i;- a?;t) (-Ygt - ayig) (z::a . z“) (Z:Z : b z‘”) V: 3;‘;

e e

¢t ¢¢ ¢ tt t¢ té t 1
z__ + 5 B “d z e BY ) (Yo +8Y ) Tn i

|
!
i
1
i
r

Bn Bn o+
2o~ 225 ez -2 o eath ot ath BT
ne n nd ne n nd ne n n
= d d dL L 3
(39
for n=0, ¥1, 42,..... . In (39), 3§, V:, fﬁ, and f: are col imn
vectors of ‘he coefficien's appearing in (33) and (34). Also,
o B q
(o) i ” dnt * B% 100 )ds (40)
Pq g P q
e ” Sony © Relipge (41)
S
e -1l S |
Vn1 n. II g-ni E ds (42)
S S
o | i i
Ini j g-ni nxH ds (43)

where p may be either t or ¢, q may be either t or ¢, and f may be
either e or d. If p=q in (40), it matters whether the magnetic field
yf(g:j) is evaluated just outside or just inside S. The Y's without
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carets in (39) are given by the right-hand side of (40) in which the mag-
netic field is evaluated just inside S. The Y's with carets in (39) are
given by the right-hand side of (40) with magnetic field evaluation just
outside S.

The Y and Z submatrices on the left-hand side of (39) are the same
as in equation (88) on page 24 of [9] with the reservations that the caret
_on Y denotes magnetic field evaluation just outside S, and the extra sub-
& far The I colum
vectors on the right-hand side of (39) are the sam as in equation (88)

script e or d denotes radiation in either ue, ee o U

on page 24 of [9] whereas the V column vectors in (39) are the same as he

V's without carets in equation (88) on page 24 of |9].

The solution Vﬁ, V:, f;, and f: to the matrix equation (39) det rmines
the equivalent electric and magnetic currents J and M according to (32 and
(34). From Fig. 2, these currents radiate in R to produce the sc attered
field outside S.

IV. FAR FIELD MEASUREMENT AND PLANE WAVE EXCITATION

in this section, meas irement vectors are used to obtain the far field
of the equivalent surface cu-rents J and M radiating in Hgr €g° Th s far
field is the far field scattered by the homogeneous boedy of revolut on. For
plane wave excitation, the composite vector on the right-hand side of (39)

is expressed in terms of these measurement vectors.

By reciprocity,

E° - I8 = ” (I(p) * E(1L,) - M(x) - H(IZ ))ds (44)

S

where gf is the far electric field due to i and M, [&r is a receiving elec-

2
“r

tric dipole at the far field measurement point, E(I&r) is the electric fiell
due to I&r, and E(I&T) is the magnetic field due to I&t' Both E(I&r) and
E(I&;) are evaluated at point r on S where r is the point at which the dif
ferential portion of surface ds is located. 1If £r is tangent to the radia ion
sphere,




Fig. 6. Body of revolution and coordinate system.

o
-
=
-

Fig. 7. Plane wave scatterin;; by a dielectric body of
revolution.
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e

-jkr

r -jk_°r

- =jkn.e ~r -
E(I&r) 4mr I&r o (45)

r
-jkr g
r -jk_-°r

g 7 g~ ,
B(IL) (k, * 12 e (46

4nr
r

where r. is the distance between the measurement point and the origin in
the vicinity of S. Also, 5{ is the propagation vector of the plane wave
coming from I&r, k is the propagation constant and n is the intrinsic
impedance of the medium outside S. To simplify the notation in this se -
tion, we have omitted the subscript e from all parameters dependent on the
medium. It is understood that all far field measurement vectors and plane

wave excitation vectors depend only on the external medium Bes €,

Substitution of (33), (34), (45), and (46) into (44) gives

-jkr "
£ E o : % 8 h jn¢
B eddle . ¥ G WP O L 0, 47
6 4nrr k. BB n oo nn nn
for I = ur and
~T u\re
s -3 e_jkrr b ~tbat ~$ 03¢ <ttt ~od3d jn¢r
AR T SR L S L T RS e i (48)
¢ o R n n n n n n n n

for I&r = 2; where g; and E; are unit vectors in the er and ¢r direct ons

respectively. As shown in Fig. 7, er and ¢r are the angular coordin:ites of

the receiver location at which 1%, is placed. In (47) and (48), Eg and E:

are the er and ¢r components of gs. Also, Vs, Vﬁ, f;, and fz are c lumn

vectors of the coefficients appearing in (33) and (34). Furthermo'e, ﬁgq s

a row vector whose jth element is given by

e 2 T o
S

where p may be either t or ¢ and q may be either 6 or ¢. In view of (35)

and (36), (49) is the same as equation (92) on page 26 of [9]. It is

shown in [9] that the right-hand side of (49) does not depend on ¢r.
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Znj
by (35) aid (36), the equivalent currents (33) and (34) and the fields (47)

and (48) lhave special forms. To obtain these forms, assume that the incident

electromagnetic field E}, g} is either a 6 polarized field defined by

For plane wave incidence and expansion functions_gzj and siven

B! = kn of o (50)

B- -k . 0 (s1)
or a ¢ polarized field defined by

B =kny o (52)

Bt =k o ¥ (53)

where Et is the propagation vector and, as shown in Fig. 7, gg

unit vectors in the et and y directions respectively. Here, et is the

and 1 are
ey

colatitude of the direction from which the incident wave comes. Et is in

the xz plane. No generality is lost b; putting Et in the xz plane because
if E{ were shifted out of the xz plane by an angle ¢t’ the response would

also be shifted by the same angle ¢t.

Substituting (50) and (51) into (42) and (43), then substituting (52)
and (53) into (42) and (43), next taking advantage of the relationships

t ¢

g-ni e - g—ni b5
¢ - - 3t

Ay * 2% " dy o

which are apparent from (35), (36) and Fig. 6, then comparing the results
with (49), and finally using equation (104) on page 29 of [9], we obtain
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r;;v:e §t¢ﬂ L 3t0 2t |

n n n n

20 Fee 300 e

n n n n

= (56)

gro e a0

n n n n

> x

20 o gt o
L n n ) L n n 4

The first superscript on 6; and ?; in (56) is the superscript which anpears
on the right-hand side of (39). The second superscript on 6; and fn in (56)
denotes the polarization of the incident plane wave. If this second super-
script is ), the 6 polarized field given by (50) and (51) is incident If
this second subscript is ¢, the ¢ polarized field given ty (52) and ()3) is
incident. The jth element of the column vector ﬁgq on the right-hand side

of (56) is given by (49) with er replaced by et. Conceding that er does not
appear explicitly in (49), we really mean that er is replaced by et after the
surface integral in (49) is evaluated. In other words, er is replaced by et

in equation (95) on page 27 of [9].

Fcr plane wave incidence, the +n and -n terms in formulas (33) and
(34) for the equivalent currents can be combined as follows. According to
equations (102) and (103) of [9], the Y and Z submatrices in (39) are either
even or odd in n. The even-odd properties in n of the submatrice: of the

square matrix on the left-hand side of (39) are tabulated as

r 1
- + + -
+ - -+
- + + -

i # - - *

where + denotes an even submatrix and - denotes an odd submatrix. It
follows that the submat -ices of the inverse of the square matrix o the

ieft-hand side of (39) have even-odd properties in n given by

18
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B e
+ - + -
+ - + -

Rl IR SRR

From (56) and the even-odd properties of q given by equation (104) on
b

page 29 of [9], the column vectors Vn and In on the right-hand side of

(39) are either even or odd in n. The even-odd properties of the sub-

- matrices on the left-hand side of (56) are tabulated as

B

- +

— -

Because of the above even-odd properties of the square matrix on the left-
hand side of (39) and the column vector on the right-hand side of (39),
the solutions to (39) satisfy

vte Vt¢ —Vte vt¢‘

-n -n n n
{00 oo {500 ¢

-n -n n n

&= (57)

f:e Tt¢ fte _ft¢

-n -n n n
740 F06 360 F60
L -n -n i . n n —

The first superscript on the column vectors V+n and T+n in (57) is that
which appears on the column vectors Vﬁ and Tg_bn the left-hand side of
(39). The second superscript on the column vectors in (57) denotes ei ‘her
the 6 or the ¢ polarized incident plane wave. Substitution of (57), (.5),

and (36) into (33) and (34) yields




3" = @l + ] 20 )y costme) + 2j(ff:e)g¢sin(n¢) (58)

%- - @ u, + Z 23 (FV ")y, sin(ng) + z(EV§e)g¢cos(n¢) (59)

n=1

for the 6 polarized incident wave and

= (f1¢¢)u + ngl zj(Eiﬁ¢)Etsin(n¢) * z(ffg¢)3¢cos(n¢) (60)
Tub - @y + ng 2574 1 cos(ne) + 25 (V8% sinme) (61

for the ¢ polarized incident wave. In (58)-(61), f is a row vector of
the fj(t). The superscript €6 or ¢ on J or M in (58)-(61) differentiates
the equivalent currents for the 6 polarized incident wave from those fo

the ¢ polarized incident wave.

The far scattered field: (47) and (48) are specialized to the ¢
polarized incident plane wave 'y appending the additional subscript 6 to
E® on the left-hand sides of (.7) and (48) and the additional superscript
0 to V V¢ ft, and f¢ on the right-hand sides of (47) and (48). More-
over, in view of equation (104) on page 29 of [9] and (57), the +n and -n
terms in (47) and (48) can be combined. As a result, (47) and (48) become

-jkr e
B - dne__ T{Reep0 . gEOITOL 5 ¥ (REMEOL RONOC +
66 hwrr o o o o ji © = n n
~t0t0, ~¢03¢0
+ REOTEO, 0070 )cos(n¢r)} (62)
-jkrr a
E° =08 7 (-RUOYTO_ ROOVOC 4 gbegee
$6 27mr & n n n n n n
r n=1
+ R0 60 (ng ) (63)

for the 6 polarized incident plane wave. Similarly, (47) and (48)

become
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T ——
53]
[}
=
[

i L AUARS Wi R+ R sintne ) (60)
r n=1
—jkrr =
8 _ —jne _ RtO3te | ~odrdd _RtO ytd _ 206246
E¢¢ 4mr {. Ro Vo o Ro To 2 Z ( Rn Vn Rnev: i
! r n=1
| Stortd . ~ddred
+ Rn In + Rn¢fn )cos(n¢r)} (65)

for the ¢ polarized incident plan. wave. The first subscript on E° on

i et A o S5 it s

the left-hand sides of (62)-(65) denotes the receiver polarization and

the second subscript on E° denotes the transmitter polarizition.

é , The scattering cross section opq is defined by
4nri|Es |2
)5 s L (
g = 66)
Pq lEiIZ

-

s
is a com-

where p is either 6 or ¢ and q is either 6 or ¢. In (66), E
ponent of the scattered field given by (62)-(55) and \E}\ is the magnitude

of the electric field of the incilent plane wave. According to (50) and (52),

Y = xn (67
for both polarizations so that
Avri\Es \2
- — Pk (68) :
Pq K2 2 :
Normalized versions of (68) are ;
1
SEE Arilﬁs |2
7 = 22 2 (69) :
ma kan
f o ri|Es |12
A ™

where a is some characteristic length associated with the scatterer and ) is

the wavelength in the external medium.
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V. EXAMPLES

A computer program has been written to calculate the equivalent
currents and scattering patterns for a dielectric body of revolution ex-
cited by an axially incident plane wave. This program is described aad
listed in Part Two. Some computational results obtained with this program
are given in this section.

Figures 8 and 9 show the mignitude and phase of the normalized

J J Me M

equivalent currents —2-, ﬁi ' Fo and Ei on the surface of a dielectric

y y X X

sphere for which ka = 3 and o - 4. Here, k is the propagation constan

in free space, a is the radius of the sphere and € is the relative
dielectric constant of the sphere. Figure 8 represents our solution o the

PMCHW formulation. Figure 9 depicts our solution of the Miiller formulation.

In Figs. 8 and 9, the incident field is a plane wave traveling in
the positive z direction. THETA = 0° is the forward scattering direction
and THETA = 180° is the backscatte: ing direction. The incident field is
given by (50) and (51) with Ot = 180°. The origin r = 0 is at the center
of the sphere. In F gs. 8 and 9, Je is the u, = - u, component of electric

-0

current (58) versus | in the ¢ = 0 plane, J¢ is the 2¢ component of (58)

versus 0 in the ¢ = 90° plane, M, is the u, = - y, component of magznetic

current (59) versus 6 in the ¢ = 90° plane, and M¢ is the g¢ component of
(59) versus 6 in the ¢ = 0° plane. For axial incidence, only the n=1 term
is present in (58) and (59). The symbols X and + denote respectively
magnitude and phase of the method of moments solution for the pertinent
component of the electric or magnetic current. The solid curves : re the
exact equivalent currents obtained from the Mie series :colution [11]. The
normalizing constants Ex and Hy are defined in terms of the incident field

(50) and (51) by

i
E =u o.E-l 0_-kn
(71)
H. =y ¢ Hil = -k
~ | r=0

[11] R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGrsw-Hill
Book Co., 1961. Section 6-9.
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where k and n are respectively the »ropagation constant of fre« space and

the impedance of free space.

The currents of Figs. 8 and 9 were obtained Ly using a 20 point
Gaussian quadrature formula for all integrations in ¢. All integraticans
over the functions {fj(t)} in t = a(m-6) were done by sampling each
fj(t) four times. The -fj(t)} consisted of 14 overlapping triangle
(divided by the cylindrical coordinate radius) functions equally spaced
in 6. More precisely,

NP = 31
NPHI = 20 (72)

MT = 2

where the above variables are input data for the computer program described

and listed in Part Two, Section V.

Figures 10 and 11 show the scattering patterns radiated by the cur-
rents of Figs. 8 and 9 respectively. The svmbols x and + denote

%00 Y
——E-and —ii respectively. The solid curves are the exact patterns obtained
ma ma

from the Mie series solution [11]. The patterns oee and o¢e are given by

(69), (62) and (63). Here %6 is the 6 polarized pattern versus Or in the

¢ = 0 plane and ¢,, is the ¢ polarized pattern versus 6. in the ¢ = 90°

plane. The THETA¢2n Figs. 10 and 11 refers to er. For axial incidence,
only the n=1 terms are present in (62) and (63). Elsewhere [3, 12], the
pattern O, is called the horizontal polarization because it is polarized
parallel to the scattering plane. Similarly, the pattern 0¢e is called the

vertical polarization because it is polarized perpendicular to the scatter-

ing plane.

Figures 12-17 show the scattering patterns for three other dielectric
spheres. Figures 12 and 13 are for relative dielectric constant er = 1,1,
Figs. 14 and 15 for ., = 10., and Figs. 16 and 17 for . 20. All other

[12] P. Barber and C. Yeh, "Scattering of Electromagnetic Waves by
Arbitrarily Shaped Dielectric Bodies,'" Applied Optics, vol. 14, No. 12,
December 1975, pp. 2864-2£72.
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Fig. 10. Plane wave scattering patterns for dielectric spherc, ka = 3, €. 4, PMCHW
solution. Symbols > and + denote horizontal polari:ation and ve .ical polari-
zation respectively. Solid line denotes exact solu ion.
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vertical polarization respectively. Solid line denotes exact solution.
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vertical polarization respectively. Solid line denotes exact solution.
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parameters in Figs. 12-17 are the same as in Figs. 10 and 11. In Figs. 12
and 13, values less than 0.0001 are plotted at 0.0001.

Figures 18 and 19 show the computed scattering patterns of a finite
dielectric cylinder of radius a and height 2a when a is 0.25 free space
wavelengths. The relative dielectric constant of the cylinder is i i 4.,
The incident field is a plane wave traveling in the positive z directionm,

the same field which was incident upon the previous dielectric spheres.
%6 %8
Figure 18 shows o and —ii- as obtained from our solution ot the PMCHW

Ta Ta

%0 %0
formulation. Figure 19 shows ——i-and —Qi- as obtained from our solution

ma ma
ag ag

of the Miiller formulation. The patterns —Eg-and —ig- are plotted with the
ma ma

symbols x and + respectively.

' The equivalent currents which radiate the patterns of Figs. 18 and 19
were obtained by using a 48 point Gaussian quadrature formula for all inte-
grations in ¢. All integrations in t over the functioms (fj(t)} were done by
sampling each fj(t) four times. The {fj(l)} consisted of 11 overlapping
triangle (divided by the cylindrical coordinate radius) functions equally

spaced in t. More precisely,

NP = 25
NPHI = 48 (73)
MT = 2

where the above variables are input data for the computer program described

and listed in Part Two, Section V.

VI. DISCUSSION

According to Figs. 12 and 13, the scattering patterns obtained from
our solution of the Miiller formulation are more accurate thar those ob-
tained from our solution of the PMCHW formulation for the dic¢lectric sphere
with ka = 3 and €, = 1.1. From plots not included in this rcport, we ob-
served that both our PMCHW solution and our Miiller solution for the equivalent
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currents on the dielectric splere were reasonably accurate. However, he
following argument shows that when €, is near one, a slight inaccuracy in

the equivalent currents could affect the scattering patterns drastically.

P TN T ST

As €, approach:s one,ithe equivalent electric and magnetic currents
approach n x E and E. X E_respectively whereas the scatterning patterns
approach zero. This means that the equivalent electric and magnetic
currents produce fields which nearly cancel each other. Hence, a slight
inaccuracy in the equivalent currents coulc cause a large percentage

inaccuracy in the scattering patterns.

We believe that our Miiller solution is more accirate than our
PMCHW solution whenever € is close 1o one. When a and B are given by
i (22) and (23) as in the Miiller formulation, the left-hand sides of (9)

and (10) approach -M and J respective'y as €. approaches one. In this

case, the expected solution

J=n x =
M=Ei><n

can be obtained by inspection of (9) and (10). However, if o = B = |

as in the PMCHW formulation, the solution to (9) and (10 is not obvious
when S 1 because the field operators on the left-hanl| sides of (9)
and (10) are not diagonal. With our Miiller solution, t! : matrix on the
left—?and side of (39) would become tridiagonal for €. 1 if its first
two rows of submatrices were interchanged. With our PM HW solution, no

such simplification of this matrix is possibl: for e 1.

We recommend at least 10 expansion functions per wavelength per
component along the generating curve of the dielectric body of revolution.
For example, if the generating curve were one wavelength long, the order
of the square matrix on the left-hand side of (39) should be at least 36.
The number 36 is arrived at as follows. There should be at least 9 expan-
sion functions per component of current. We say 9 expansion functions
rather than 10 because we are using overlapping triangle functions with no
peak of triangle function at either ends of the generating curve. There

are two components of electric current and two components of magnetic

current.

37

Sump—



According to equations (20)-(23) of [9] and (58)-(61) of [91, each

element of the square matrix in (39) is a triple integral consisting of
\ one integration with respect to ¢ and two integrations with respect to t.
; The ¢ integral is evaluated by using a Gaussian quadrature formula. Each

t integration is done by crude sampling akin to the trapezoid rule. In

any case, there should be at least 10 sam>le points per wavelength in the

media in question. For instance, if - is the largest cylindrical
coordinate radius of the dielectric body of revolution and - is the ]
length of the generating curve, then

i0e >
S|

| NI >

lOnpma
BPHE 3 see=rte

where NP and NPHI are input arguments of the subroutine YZ described .nd

listed in Part Two, Section 1I and ) is the wavelzngth in the media n

question. If f
media, but if f

e in (40)-(41) then A\ is the waselength in the ext :rnal
d in (40)-(41) then )\ is the wavelength inside th: dif-

fracting body of revolution. The main program in Part Two, Section V is

oversimplified in that it uses the same values of NP and NPHI for both
f=e and f = d.

Loss of accuracy in the computed patterns of Figs. 16 and 17 may
be due to the fact that (74) was violated. According to (74), the values
of NP and NPHI for f = d should be nearly 70 or greatcer insteac of the low
values appearing in (72). Unfortunately, increasing the values of the
variables NP and NPHI increases the computer time required to solve the

problem.

We have been trying to obtain accurate numerical results for the
dielectric sphere for which a = 0.2 free space wavelengths and e 80.
from our gieneral dielectric body of revolution program. We have not been
able to obtain clear-cut convergence with respect to the variables on the
left-hand sides of (72) because we could not afford to increase them as
much as desired. Our PMCHW solution and our Miiller solution for the
equivalent currents and scattering patterns differ from each other and

from the exact solution.
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For the sphere, each element of the quare matrix on the left--hand
side of (39) can be written as a sum jver the infinite set of spherical
modes. So far, we have not becn able to successfully implement thi; alter -
nate evaluation of the matrix elements in terms of spherical modes. The
major difficulty seems to be lack of agreement of a few matr x elements for
which both expansion and testing fun:tions are near one of tlie poles of the

sphere.

Both the PMCHW solution and the Miiller solution are obtained by taking
a linear combination of (5) and (7) and a linear combinatio: of (6) and (8 .

There are two other possibilities which are

(1) A linear combination of (5) and (6) and a linear combi -
nation of (7) anc (8).

(2) A linear combination of (5) and (8) and a lirear combi-
nation of (6) and (7).

These other two possibilities give rise toaltermative numerical solutiors

which may compare favorably with the PMCHW solution and the Miiller solu ion.
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APPENDIX A

. THE EQUIVALENCE PRINCIPLE

Let Ee’ Ee be an electromagnetic f eld defined outside a closed
surface S. The permcability, permirtivity, and electric and magnetic
source currents outside S are ue, € ﬂe’ and ge respectively. Thi :
outside situation where the subscrijt e stands for "exterior mediuw "
is shown in Fig. A-1. 1In Fig. A-1l, the media and sources inside S are
undisclosed. Let Ed’ Hd
where the p:rmeability, permittivity, and electric and mignetic sources

be an electromagnetic field defined insid: S

are U, €, gd’ and respectively. This inside situation where the

!d

subscript d stands for "diffracting mcdium" is shown in Fig. A-2. 1In

Fig. A-2, the media and sources outsice S are undisclosed. The equi-

valence principle states that the solution to the composite radiation

problem consisting of medium p , € and sources J , M outside S, medium
e’ e e’ wp

Wos €4 and sources gd’ Ed inside S, an¢ electric and magnetic surface

currents J, M on S given by

J=px @, -H) (A-1)
. (Ee_Ed) xn {A-2)

where n is the exterior unit normal vector on S is the composite elec-
tromagnetic field E, H defined by

E, ﬂ.= Ee’ He outside S (A-3)
E, H= Ed’ ﬂq inside 3 (A--4)

The composite radiation problem is shown in Fig. A-3 which is entitled
composite situation.

The equivalence principle is proved by showing that ihe configu-
ration of media and sources in Fig. A-3 giies rise to the composite field
E, ﬂ.defined by (A-3) and (A-4). Now, E, H will be the field gen¢ rated
by the media and sources of Fig. A-3 if E, H satisfies Maxwell's «quations
with source terms included and the radiat .on condition at infinity. §. H

satisfies Maxwell's equations outside S and inside S becauselgg,lge and
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Ed’ Hd satisfy Maxwell's equations ou side S and inside ¢ respectively.

E, H also satisfies the radiation conliition at infinity because Ee, lle

satisfies the radiation condition at infinity. It remains to be shown
that Maxwell's equations for E, H exhibit the surface current sources
J and M given by (A-1) and (A-2).

It is well known that a surfice current source on S gives rise o
a discontinuity across S of tie tangential component of the field. The
preceding statement is easily verified by means of an argument based imn
the iategral forms of ! axwell's equetions. Now, this sam: argument c¢in
be coistrued to imply that a discontinuity across S of the tangentia
compo :ent of the field gives rise to a surface current source on S.
Hence Maxwell's equations for E, H exhibit the electric and magneti
surface current sources ./ and M on S given by (A-1) and (A-2). There-
fore, k, ﬂ is the solution to the coiposite radiation problem shown in
Fig. A-3 because E, }i satisfies Maxw:11's equations with sources and the
radiation condition at infinity.




APPENDIX B

PROOF THAT THE SOLUTION TO E(UATIONS (5)-(8) IS UNIQUE

The solution J, M to (5)-(8) wiil be unique if the associated set

of homogeneous equations

-n x Ee = Q (B-1)

-n x Ee =0 (B-2)

_2 x .E:; = 0 (8—3)

ax =0 | (B-4)
has only the trivial solution J = M = 0.

From (B-1) and (B-2), J, M radiate in Hes € to produce a field
whose tangential components are zero just inside S. Hence, according
to the relition between J, M and the discontinuity of tangential field
across S a: exemplified by (A-1) and (A-2), the field Ee, E-e radiated by
i, }1 in ue, €e outside S satisfies

X

1=]

H (B-5)

 3<J {

s B (B-6)

just outside S. See Fig. B-l.

From (B-3) and (B-4) the electric and magnetic currents -J, -M radiate
in iy 4 to produce a field whose tangential components are zero just outside

S. Hence, according to the relation between -J, -M and the discontinuity of

tangential field across S, the field _-Ed' .H-d radiated by -Js -.bi in Mg €4
satisfies
xRy =4 el
(B *n=M (B-8)

just inside S. See Fig. B-2.

The equivalence principle is used to combine the outside situation
in Fig. 3-1 with the inside situation in Fig. B-2 to obtain the composite
situatior shown in Fig. B-3. Because of (B-5)-(B-8), the compcsite
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situation in Fig. B-3 is source-free.

Therefore, the field in Fig. B-3

Hence, the fields in Figs. B-1 and B-2 ..re zero
everywhere which implies that J=M=0.

is zero everywhere.

Thus, the solution to (5)-(8) is unique because the associate i set
(B-1)-(B-4) of homogeneous equations has only the trivial solution.
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APPEND X C

MORE EX \MPLES

The equivalent currents and scattering patterns for the dielectric
spheres for which Sy ™ 4 and ka = 4, 5, and 6 are plotted in Appendix C.
Figures C-1 to C~4 are for ka = 4, Figs. C-5 to C-8 are for ka = 5, and
Figs. C-9 to C-12 are for ka = 5. All other parameters are the same as in
Figs. 8-11 in Section V. 1In pairticular, the input data for the comp iter
program which generated the method of moments results plotted in Figs. C-1
to C-12 is given by (72).

It is evident from Figs. 8-11 and Figs. C-1 to C-12 that the method
of moments solutions for the equivalent currents and scattering patte ms
are not as accurate at ka = 4, 5, and 6 as at ka = 3. Los; of accura y

at the higher values of ka may be due to violation of (73).
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PART TWO

COMPUTER PROGRA?!

L. INTRODUCTION

The computer program calculates the equivalent electric and magnetic
currents (58) and (59) and the scattering patterns (70) for a loss-free
homogeneous dielectric and/or magnetic material body of revolution immersed
in an axially incident plane wave. This computer progra: consists of a

main program and the subroutines YZ, PLANE, DECOMP and S )LVE.

Part Two consists of definitions of the input and output for the
subroutines YZ, PLANE, DECOMP, and SOLVE, listings of these subroutines,
definitions of the input and output for the main program, a verbal flow
chart of the main program, and a listing of the main program with sample
input and output. The subroutines YZ and PLANE are similar to subrouti ies
of the same name in [10]. The subroutines DECOMP and SOLVE are, ¢Xxcept
for dimension statements, exactly the same as in [13]. Hence, the insides
of the subroutines YZ, PLANE, DECOMP, and SOLVE are not described in de -ail
in Part Two. Because these subroutines are quite complicated, a black nox
approach is suggested wherein the user is concerned with just the input and
output of these subroutines. However, the user is encouraged to delve
inside the main program and to make any changes therein that he deems neces-

sary to suit his needs.

II. THE SUBROUTINE YZ

Description:

The subroutine YZ(NN, NP, MNPHI, M, MT, RH, ZH, X, A, Y, Z) stores the

matrices Ynf and an defined by

t te’

[Yn' Ynf

nf *

YdQ Y¢¢

| n! nf

[ et to

znf an

Z .= (76)

ol | Zwi
A nf an




by columns in Y and Z respectively. The submatrices on the right-hand
sides of (75) and (76) are given by (40) and (41). The first 9 argu-
ments of YZ are input variabies. 1xcept for the new input variables M
and MT, the subroutine YZ is the same as the old subroutine YZ on pages
17-21 of [10]. If M = - 1 and MT = 2, these subroutines are exactly the
same as far as the calculation of Y and Z in terms of the rest of tle

input variables is concerned.

M= -1 for field evaluation just inside S and M = + 1 for field
evaluation just outside S. M= -1 if f =e in (75) and M =+ 1 if
f =d in (75). The value of M is not used in calculating (76) because the

tangential components of the elzctric field operator in (41) «re con-

E
tinuous across S. All numerical integrations over t :ﬁ fj(t) appearing

in (35) and (36) are done by sampling each fj(t) 2*MT times. The rep-e-
sentations of pfi(t) and é%—(pfi(t)) given by (66) and (67) of [9] ar:
replaced by representations which contain 2*MT impulse functions ins ead of

4 impuls. functions. For instance, (66) of [9] is replaced by

2*MT

1 Z
- T
+(i=1)*2%
k gl pt+(i-1) *2*MT

pfi(t) = §(t-t 77)

pH(A-1)AMT) *

i=1,2,...N where N will be defin:d in the paragraph which follows the next
paragraph. The T's appearing in (77) will be defined by (78).

Seven of the input variables are the same as in ‘he old subroutie

YZ on pages 17-21 of [10]. These varial les are defined in terms of va iables

appearing in [9] by

NN = n
NP = P, page 9
NPHI = N¢, page 13
RH(i) = ko;, page 9
ZH(1) = .z;, page 9
X(k) = ¢ Page 13
A(k) = Ak’ page 13
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In summary, n denotes the e dependence in (35) and (36), (p;, z?),
i=1,2,...P are coordinates on the generating curve, the k w' ich multi-
plies Py and z5 is the propagation constant, and X and Ak ire the

abscissas and weights for the N, point Gaussian quadrature integration

%
in ¢. Note that NP-1 should be aa inte jer multiple of MT. If NP-1 is
not an integer multiple of MT, the program will ignore RH(m) and ZH(m)

for
[(NP -1)/MT]*MT+1 < m < NP
where [(NP-1)/MT] is the largest integer which does not exceed (NP-1)/MT.

Minimum allocations are given by
COMPLEX Y(4*N*N), Z(4*N#*N)
DIMENSION RH(NP), ZH(NP), X(NPHI), A(NPHI), D(NG)
PD(NG), TP(2*MT*N), CR(NPHI), C1(NPHI), C2(NPHI),
C3(NPHI), C4(NPHI)
COMMON RS(NG), ZS(NG), SV(NG), CV(NG), T(2*MT*N)
where

N = [(NP-1)/MT] - 1

NG

(N+1) *MT

The variables in common make the results of some intermediate calculations
done in YZ available to the subroutine PLANE described in Section IIT of
Part Two.

We mention a few portions of YZ which differ from the subroutine

listed on pages 18-21 of [10]. Equation (29) of [9] has been generalized to

21
k 1
TomMrx(3-1+1 T B (qZI Mrx(3-U+q ~ 2 deexa-n+0 dereg-nar 9
1
=k - k
Tomragmrer ~ 3, (2 :Zl drageq ¥ 2 ureoer) Surager .

for J = 1,2,...Nand I = 1,2,...M" where

MT
Z dyrx (J-1)+1 o
MT
A, =k Z

2 dyraget o
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and the d's are given by equation (28) of [9]. Note that A' is the
electrical length of generating curve over which the first half of
fJ(t) exists and that A2 is the electrical length of gener:ting curve
over which the second half of fJ(t) exists. The generalization of
equation (68) of [9] is

53 _ M g-n4r s
2*MT*(J—1)+I Al

s 3 _deT*J+I (83)
2*MT*J-MT+1 A2

for J = 1,2,...N, and T = 1,2, ...MI where Al and A2 are given by (&0)
and (81). Expressions (’/8) - (83) are calculated in DO loop 68. D
loop 12 accumulates Al in DEL. DO loop 19 puts (78) in T(2*MT*(J-1)+T)
and (82) in TP(2*MT*(J-1)+I). DO loop 15 accumulates A2 in DEL. DO

loop 16 puts (79) in T(2*MT*J-MT+I) and (83) in TP (2*MT*J-MT+I).

Th2 subscripts KT, LT, and J1 ins*de DO loop 32 are obtained as
follows. Since the generating curve consists of NG = (N+1)*MT small
intervals, it is composed of (N+1) large intervals where the mth large
interval consists of the ((m-1)*MT+1)th through the (m*MT)th small
intervals. The index I of DO loop 60 denotes the Ith small interval.

The Ith small interval is contained in the (I9+1)th large interval where
I9 = [(I-1)/MT]. The second half cf f19(t) and the first half of fI‘+1(t)
are in this large interval. The index K of DO loop 32 denotes f19+K l(t).
Since T((m-1)*2*MT+1) through T(m*2*MT) is allotted to fm(t), m=1,2,...,N,
fm(t) is preceded by (m-1) overlaps. For each overlap the subscript of T
increases by an amount MT not accounted for by I. Hence, replacirg m by

I9+K-1, we arrive at the subscript

KT = T + (T9+K~2)*MT

for T. Here, KT is the field subscript which refers to the testing

function. By analojy, the source subscript LT which refers to the expan-

sion function is given by

LT = J + (J94L-2)*MT
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Retaining fI9+K—1(t) as the testing function, we take the analogously

subscripted function f (t) to be the exjansion function and arrive

J9+L-1
at the matrix subscript

J1 = (J9+L-2)*N2 + I9+K-1

where, as in the program, N2 = 2%*N,

DO loop 17 accumulates in Rl the contribution to (Y;t)J 3 of
’

equation (31) of [9] due to the £7§L5- term in equation (32) of [9 .
s |
This contribution is given by
2*MT

Rl =
I

T

 riaspkroiy® TERGRG-1))

T *
I+2*MT* (J-1)

o~

1

where, as in the program,

PD(1) = = M * (ot —)
174

Here, the factor -M not included in equation (32) of [9] provides for

the choice of field evaluation either outside or inside S.

DO loop 18 accumulates in Rl the contribution to (Y;t)J_1 3 of
equation (31) of [9] due to the EzéLS—' term in equation (37) of [9].
ii

This contribution is given by

MT
* Rl
RL = § TI42%MT*(J-1)-MT |T+2#MT#(g-1)" FL(IHMI*I=1)).
1=1

LISTING CF THE SUBROUTINE Y?

SUB OUTINE YZ(NNeNPyNPHI yM¢MToRHeZH+X9A9Ys2Z)

COMPLEX UsY (T784)12(784)9G1462,G3964,65yG69Y1,Y2,Y3,Y4,21,22,23,24
DIMENSION RH(161)3ZH(161)¢X(48):A(48)+D(160) +PD(1€0)«TP(=20)
DIMENSICN CR(48),C1(48),C2(48),C3(48),C4(48)

COMMON KRS(160) 4ZS(160) 4SV(160) +CV(160)+T(320)

PJ=3.141593

PIM=-M*pP]

N=(NP-1)/MT-1

N2=2%N

NG=( N+1)xMT

NGM=NG-MT

MT2=MT %2

DC 57 I=14NG




I12=1+1
DR=PH(I2)-RHI(I)
DZ=ZH(I2)=ZH(I1)
D(I)=SQRT(DR*DR+DZ*DZ)
RS(I) :eS*(RH(I2)+RH(I))
Z2S(1):-o5%(ZH(I12)+ZH(I))
SV(I)=DR/D(1)
CV(I)=DZ2/0(1)
PO(I)=PIM/(D(I)*RS(I)
CONT INUE
Jl=0
J5=0
00 68 J=1:N
DEL=0.
DC 12 I=1,MT

CJdl=J1+1
DEL=DEL+D(J])

> CONT INUE
J1=11-MT
SN= ) e
DO .9 I=1,4MT
J5=15+1
Jl=( 1+1
SN={ N+D(J1)
TP(JS)=D(J1)/DEL
T(JI5)=(SP=eS5*D(JL1))%TP (J5)
CONT INUE
DEL=0.
DD 15 I=1,MT
Jl=J1+1
CEL=DEL+D(J1)
CONTINUE
J1=J1-MT
SN=DEL
DO 16 I=1.MT
J5=J5+1
Jl1=J1+1
SAN=SN-D(J1)
TP(J5)=-D(J1)/DEL
T(J5)==(SN+,5%D(JL1) ) *TP(J5)
COUNT INUE
J1=J1-M1
CONTINUE
PI2=.5%P1
“N=NN
DO 25 K=1yNPHI
PH=PI2%(X(K)+1.)
PHMN=PH*FN
SN=SIN(.5%PH)
CRIK)=4*SN*SN
R1=:PI2*A(K)
CS + 1*CUS(PHN?
Cl K)=o5%CR(K)*.S
C2 (K)=COSIPH)*C
C2(R)=K1%SIN(PE )%SIN(PHN)




C4(K)=CS

25 CONTINUE
NZ2N=N2* N
N4N= N2N*2
DU 62 J=1,N4N
Y(J)=0.
2(J)=0.

62 CCONTINUF
U=(0eyle.)
DC 59 J=1,NG
FJ=FN/RS(J)
L1=1
L. =2
IV (JLEGMT) L1=2
IF(J GT.NGM)} L2=1
Jo9=(J-1) /MT
JT=)+MT%(J9=-2)
J5:(J9-2)*%N2-1
S1=1.
DO 60 I=1,J
19=(1-1)/MT
IT=1¢MT%(]19-2)
Je=19+J5
FI=FN/KS(1)
KP=F S(J)=-RS(I)
JP=ZS(J)-2ZS(1)
t2=FPXRP+Z2P%2P
JF(I «NEeJ) GC TO 41
2=, 0625%D(J) % (J)

41 PI=RS(I)*RS(J)
Gl=0.
G2=0.
GB=O.
G4=0.
G5=0.
Gé=0.
DO 61 K=1,NPHI
R4=R2+K3*CF (K)
R5=SQF T(k4)
21=S1/R5%(CUS(RS)-U%*SIN(R5))
Y1=Z1*(1le+U*:R5) /R4
Gl=C1(K)*Y14G1
6G2=C2(K)*Y14G2
G3=C3(K)*Y1+4G3
G4=C4(K)*Z1+4G4
G5=C2(K)*Z1+G5
G6=C3(K)*Z1+G6

61 CONT I[NUE
63=U+G3 R
Y1=(RP*CV{J)=ZP%SV(J)) :G2=-RS(I)*CV(J)*Gl
Y2=(RS(JI* VLI *¥C U (J)=RS(I)%=SV(J)*CV(I)=ZP%SV' 1) *SV(J))*G3
Y3=ZP*G3 ;
Ya=(RPRCVII)=ZP*SV (1)) *G2+RS(J)*CV(I)*G1 3
Z1=U*( SVII)*SV(J)=G5+CV(I) *CV(J) *G4) X
Gl==U*G4
12==SV(J)*Gé
G2==F1*G4
23=SV(1)*G6
G3=F J*(G4 65
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32
31
60
59

17

27

26

Za4=U*( G5-F I*G3)

Kl=1

K2=2

IF(I .LELMT) K1=2

DC 31 L=L1,L2

LT=J T+MT*L
JT=J6+L%N2

D0 32 K=K1l,K2
KT=] T+ MT*K
TT=T(LT)*T(KT)

J1=J 7+K

J2=J1+N

J3=J1+N2N

Jé4=J 3+N
Y(J1)=TT=xY1l+Y(Jl)
Y{(J2)=TTxY2+Y(J2)
Y(J3)=TTxY3+Y(J3)
Y(J4)=TTxY4+Y(J4)
ZGJL)=TTHZ1+TPILT)*TP{ T)%G1l+¢Z2(J1)
Z(J2)=TT*Z2+TP(LTI*T(K)*G2+2(J2)
Z(J3)=TT*Z3+TP(KT)%2T(LT)*G3+2(J3)
2(J4)=TT*724+72(J4)
CONTINUE

CONTINUE

CONT INUE

CONT INUE

N2P=N2+1

KD1=1

J1=0

J5=0

00 11 J=1,4N

DO 17 I=1,MT2
Ji1=J1+1

J5=J5+1
Rl1=F1+T(J1)*T(JL)*PD (J5)
CONT INUE

J1=J1-MT2

J5=J5=-MT2

KD2=KD1+N
KD3=KD1+N2\
KN4=KD3+N
Gl=Y(KD1)-v(KD4)
Y(KD1) =K1+61
Y(KD3)=0.

Y(KD4) =R1-G1
Z(KD1)=Z(KD1)+Z(KD1)
Z(KD2)=Z(KD2)=-2(KD3)
Z(KN2)==Z(KD2)
LIKD4)=2Z(KD4)+Z(KD4)
IF(J=1) 26,27.26
J1=J1+MT72

J5=9 5+ MT

GO Tn 22

KU1=KD1-1

KUZ2=KD2-1

KU3=KD3-1
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KU4=KD4~-1
KL1=KD1=N2
KL2=KD2-N2
KL3=KD3=N2
KL <+= KD 4=N2
R1=0.

DO 18 1=1,MT

J1=J1+1

J5=J5+1
R1=R1+T(J1)*T(J1=MT) *PD(J5)

18 CONTINUE
J1=J1+MT
G1=Y (KU1)=Y(KL4)
G2=Y (KU4)=Y(KL1)
Y(KU1) =R1+G1
Y(KU2) =Y(KU2)=Y(KL2)
Y(KU3)=Y(KU3)=Y(KL3)
Y(KU4)=R1+G2
Y (KL1)=R1-G?2
Y(KL2)==Y(KL2)
Y(KL3)==Y(KU3)
Y(KL4)=F1-G1
Z(KU1)=Z(KU1)+Z(KL1)
Z(KU2)=Z(KU2)=Z(KL3)
Z(+U3) =Z2(KU3)=2(KL 2)
Z(FU4)=Z(KJ4)+Z(KL&)
Z(KL1)=2(KU1)

! Z(KL2)=—Z(KU3)

4 Z(KL3)=-Z(KU2)

Z(KL4) =Z(KU&)

22 KD1=KD1+N2P

11 CCNT INUE
IF(N.LT+3) RETURN
J2=N2
DC 13 1=3,N
J2=J2¢N2
J1=1-2
KL1=1
DO 14 J=1,J1
KU1=J2+J
KUZ=KUL +N
KU3=KU1+N2N
KU4=KU2 +N
KL2=KL1+MN

: KL3=KLL+N2N

KL4=KLZ+N
Y(KL 1) ==Y (KkU4)

d Y(KL2)==Y(FU2)

b Y(KL3) ==Y{} L3)
Y(KL4)==Y(t U1)
Z(KL1)=Z(KL 1)
Z(KL2)==2(KU3)
Z(KL3)=-2(KU2)
Z(KL4)=Z(KU4)

KL1=KL L+N2

14 CONTINUE

12 CONTINUE
RETURN
END

2 S0t SN« D ki o N
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III. THE SUBROUTINE PLANE

The subroutine PLANE(NN, N, MT, NT, THR, R) puts R:‘j‘ of (49) in
R(J + (m-1)*N+(L-1)*4*N) where j=1,2,...N, m=1 denotes pq = t0, m=2
denotes pq = 46, m=3 denotes pq = t¢, m=4 denotes pq = ¢¢, and L=1,2,...NT.
Here, L denotes the Lth value of the receiver angle Or. Tha2 first 5
arguments of PLANE are input vari.bles. Except for the new input variable
MT, the subroutine PLANE is the same as the old subroutine PLANE on pages
22-26 of [10]. If MT = 2, these subroutines are exactly the same as far
as the calculation of R in terms of the rest of the input variables is

concerned.

The integration of fj(t) over t inherent in (49) is approximate |
by sampling fj(t) 2*MT times instead of 4 times. The represen:ation of
pfj(t) given by (66) of [9] is replaced by (77). NN is the value of
q
5

no real loss of generalitv because Rig is either even or odd in n. ! is i

appearing in Rﬁ It is required that NN > O but this requirement ca ises
the number of expansion functions lying on the generating curve. Sy :cifi-
cally, N is the maximum value of i in (77). THR(L) is the Lth valu of
the receiver angle Or where L = 1,?,...NT. The variables RS, 2S5, S , CV,

and T appearing in the common statement early in the subroutine PLA E are
input variables calculated by calling the subroutine YZ beforehand. The
calculated values of these variables depend only on the second, fif h,
sixth, and seventh arguments (NP, MT, RH, ZH) of YZ.

Minimum allocations are given by

COMPLEX R(4*NT*N)

DIMENSION THR(NT), BJ(M)

COMMON RS(NG), ZS(NG), SV(NG), CV(NG), T(2*MTI*N)
where

NG = (N+1)*MT

and M is the largest of the salues of M calculated by PLANE. The sug-
gested allocation BJ(50) will work if the maximum circumference of the

body of revolution is less than 26 wavelengths.
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19

Most of the statements in the subroutine PLANE are the same as
or very similar :-o statements in the old subroutine PLANE listed on
pages 25-26 of [10]. The major difference is in the calculation of
the subscript (IT+MT*K) for T and the subscript J1 for R. Using
reas ming similar to that used to obtain the subscrip:s KT and J1 in the

subr)utine YZ, we arrive at

(IT + MT*K) = I + (I9 + K=2)*M"
J1l = 19 + K-1
where
19 = [('-1)/MT]

The above J1 is valid only for L=1. If L # 1, then (L-1)*4*N must
be added to this Jl.

LISTING OF THE SUBROUT INE PLANE

SUBRKCUT INE PLANE(NN¢s Ny MT¢NT, THR4R)
COMPLEX R(1064)9UsUl1,U2,R1,4R2,R3,R4%
DIMINSION THR(37),Bu(50)
COMMON RS(160),2S(160) 4SV(1c 0),CV(160),T(320
NG=( N+1)=MT
U=(( ey lei
Ul=3.,141°93%U%x%NN
N4=4*N
JR=N4ENT
DL 22 J=1 JFk
R(J) =0,
CCNTINUF
J5=-1
DO 12 L=14NT
(.S=CC (THR(L))
SN=2 e* SIN(THR(L))
DO 13 (=14NG
=425% S(I)*SN
lF(XQLEQQSE-7) (JO ‘0 14
M=2-8*X+13-—2./X
IF(XelTeo5) M=10.84+ALO0G10(X)
IF(M.GE.(NN+2)) GO TO 19
BJ1=0.
BJ2=0.
8J3=0.
IF(NNsEG.1) BJ1=1.
IF(NNOFQOO) BJZ*IO

GO TO 74
BJ(M,=' .
JM=M=1

BJUMI=1.




DO 14 J=3,M
JM=J M-1
BJ(JIM) =JM/X*BI(JMe 1) =BJI(IM+2)
14 CONTINUE
$=0.
DO 15 J=3,M,2
S=S+BJ(J)
15 CONTINUE
S=BJ(1)+2.%*S
BJ2=BJ(NN+1) /S
BJ3=8BJ (NN+2) /S
BJ1=-BJ3
: IF(NN.GT.0) BJ1=BJ(NN) /S
24 ARG=Z2S(1)%CS
U2=U1*(CCSC(ARG)+U*SIN( ARG))
K4=(BJ3-BJ1)*U*U2
R2=(BJ3+BJ1) *U2
K1==BJ2*CV (1) *SN=U2+CS*SV(I)*R4
R3=SV(I)*R2
F2==CS%R2
19=(I-1) /M7
IT=1#MT*(]9-2)

J7=19+J5
K =1
K: =2

IF{I9.EQ.N) K2=1
DL 20 K=K1ly4K2
TT=T(IT+MT%K)
J1=J 7+K
J2=J1+N
J3=J 2¢N
Jé=J3+N
R(J1)=TTxR1+R(J]1)
R(J2)=TT*R2+R(J2)
k| R(J2)=TT%*R3+R(J3)
| R(J4)=TT*R&+R (J4)
20 CONTINUE
12 CUNTINUE
b J5=J5+ V4
‘ 12 CUNTINUJUE

KE TURN

END
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IV. THE SUBROUTINES DECOMP AND S(LVE

Description:

The subroutines DECOMP(N,I?S,UL) and SOLVE(N,IPS,UL,B,X) solve
a system of N linear equations in N unknowns. These subroutines will
be used in Section V to solve the matrix equation (39). The input to
DECOMP consists of N and the N by N matrix of coefficients on the left-
hand side of the matrix equation stored by columns in UL. The output
from DECOMP is IPS and UL. This output is fed into SOLVE. Th: rest of
the input to SOLVE consists of N and the column of coefficients on the
right-hand side of the matrix equation stored in B. SOLVE puts the

solution to the matrix equation in X.
Minimum allocations are given by

COMPLEX UL(N*N)
DIMENSION SCL(N), IP3(N)

in DECOMP and by
COMPLEX UL(N*N), B(N), X(N)
DIMENSION IPS(N)

in SOLVE.

More detail concerning DECOMP and SOLVE is on pages 46-49 of [13]
LISTING CF THE SUBRCUTINES DECOMP AND SOLVE

SUBROUTINE DECOMP(N, IPS,UL)
CCMPLEX UL (3136)+PIVOT,EM
DIMENSICN SCL(S56),1PS(56)
DC 5 I=1.N
IPS(I)=1
RN=0.
J1l=1
DO 2 J=1,4N
ULM=ABS(REAL(UL(J1)))+ABS(AIMAG(UL(J1)))
J1=J1+N
IF(RN=ULM) 14292
RN=UL
CCNT T UE
SCL(I. =1+«/RN
5 COMTINUF

NM1=N-1

K2=0

DO 17 K=1,NM1

BIG=0.

DO 11 I=KeN

IP=IPS(I])

IPK=1P+K2

(S
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11

14

15

18

1o

SIZE=(ABS(REAL(UL(IPK) ))+ABS(AIMAG(UL(IPK))))®=SCL(I")

IF(SIZE-BIG) 11+11,10
BIG=SIZE

IPV=1

CONTINUE

IF(IPV=K) 14,15,14
J=1P S(K)
IPS(K)=IPS(IPV)
IPStIPV)=J
KPP=1IPS(K)+K2
PIVOT=UL(KPP)
KP1=K+1

DO 16 I=KP1l,N
KP=KPP

IP=IPS(I)+K2
FM==UL(IP)/PIVOT
UL(IP)=—EM

DO 16 J=KP1l,4N
IP=1P+N

KP=K P+N

ULl P)=UL(IP)+EM®UL(KP)
COMT INUE

K2=K2+N

CONT INUE

RETURN

END

SUERCGUTINE SOLVE(N.sIPSsUL¢ByX)
COMPLEX UL (3136) +48(56) ¢X(56) 4SUM
DIMENSION IPS(56)
NP1=N+1

IP=IPS(1)
(1)=BL1IP)

o 2 I=24N
IP=IPS(I)

Ipe=1pP

IMl1=1-1

SUM=0.

DC 1 J=1,1IM1
SUM=SUM+UL(IP)*X(J)
IP=1P+N
X(I)=R(IPB)=-SUM
K2=N*(N-1)
IP=1IPS(N)+K2

X(N) =X(N)/UL(IP)

DO 4 TBACK=24N
I=NP1-1RACK
K2=K2=N
[PI=IPS(]I)+K2
iPl=1+1

‘uM=0,

1p=1rPI

DO 3 J=1P1,yN
IP=1pP+N

SUM=SUM+UL (IP)%X(J)
X(I)=(X(I)=SUM)/ULILIPI])
RETURN

END
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V. THE MAIN PROGRAM

Description:

The main program calculates the electric and m: gnetic curre ts
%0 . %0
(58)-(59) and the normalized scattering cross sectionsiq— and-%g 1 70)

for the 6 polarized axially incident (et = 180°) plane wave (50)-(51).
The main program calls the subroutines YZ, PLANE, DECOMP, and SOLVE.
The main program is short and simple. It is a representative applica-

tion of the theory in Part One of this report.
Input data is read early in the main program according to

READ(1,10) NP, NPHI, MT, NT
10  FORMAT (4I3)
READ(1,11) BK, UR, ER, ALP, BET
11  FORMAT(SE14.7)
READ(1,12) (RH(1), I=L, NP)
READ(1,12) (ZH(I), I= , NP)
12 FORMAT(1OFS8.4)
READ (1,11) (X(K), K=1, NPHT)
READ(1,11) (A\K), K=1, NPHI)

The input variables NP, NPHI, MT, RH, ZH, X, and A are very
similar to variables of the same names in the argument lis. of the sub-
routine YZ. In summary, (RH(i), ZH(i)), i=1,2,...NP, are the c lindrical
coordinates (p;, z;) on the generating curve, 2*MT is the numbe of values
of t at which fj(t) is sampled for the purpose of numerical integration,
and X and A are respectively the abscissas and weights for the NPHI point

Gaussian uadrature integration in ¢.

The scattering cross sections are evaluated at receiver aigles
0r = (J-1): /(NT-1) radians for J=1,2,...NT. BK is the propagation
constant k in the external medium. This k appears in (50)-(51). UR

u
and ER are r:spectively the relative perme.bility Eg-and the relative
€ e
permittivity zg-of the body of revolution. Here, Mg and eq are the
e

permeability and permittivity of the (diffracting) body of revolution
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and L and e, are those of the external medium. ALY¥ and BET are r spec-
tively the constants o and B appearing in (39). The PMCHW solutio . is
obtained by setting a = 8 = 1. The Miller solution is obt:ined if a and

R are given by (22) and (23).
Minimum allocations are given by
COMPLEX YE (4*N*N), ZE(4*N*N), R(4*NT*N),
B(4*N), YD(4*N*N), ZD(4*N*N), Y(16*N*N),
C(4*N)
DIMENSION RH(NP), ZH(NP), X(NPHI), A(NPHI),
THR(NT), RC(N), IPS(4*N)

where
N = [(NP-1)/MT] - 1

Statement 38 puts Yle defined in accordance with (75) by

tt té
{Yle Yle
Yo = (84)
ot ¢
Yle e
in YE and Zle defined in accordance with (76) by
tt t¢
z1e Z1e
Z1e = (8%)
ot oo |
Z1e Z1e_|
in ZE. Storage of Yle and Z1e is by columns.
Statement 39 puts the matrix R1 defined by
Mte to
N L
R1 =4 (86!
|
$6 99
[i1 R

in R. The column vectors on the right-hand side of (86) appear in (56).

For receiver angle Gr = THR(T), R1 of (86) is stored by columns in

R((J-1)*4*N+1) through R((J*:*N).
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DO loop 22 uses (56) to store the right-hand side of (39) i . B.
DO loop 22 also puts 2/(kp;*MT+l) in RC where p;*MT+1 is the cylir drical

coordinate radius evaluated at the peak of the triangle function - nherent

in fI(t).
Statement 40 puts Yld defined by
St to
%14 Kia 1
Y1d = (87)
¢t ;09
Y14 e
£, in YD and Z1d defined by
{ tt té
| 214 214
Zld = (88)
¢t o0
zld Z1d

in ZD. Storage of Yld and Zld is by columms.

Nested DO loops 26 and 27 Hut the first two columns of submatrices
on the left-hand side of (39) in Y. The index J of DO loop 26 denotes
the Jth column of the composite square matrix on the left-hand side of §
(39).

Nested DO loops 23 and 29 put the third and fcurth columns of sub-
matrices on the left-hand side of (39) in Y. The index J of DO loop 28
denotes the (2*N+J)th column of the composite square matrix on the left- ‘
hand side of (39). !

Statements 41 and 42 solve the matrix equation (39) for the com-
posite column vector consisting of V;, vi, Ti, and f:. This composite

column vector is stored in C.

At the peak of the Jth triangle function, the n=! term of the

equivalent electric current (58) reduces to
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8 u,.sin ¢ (89)

6 - to %
1= @loypagey) Ty 4008 o+ 3oypegyy) Ty Y%

DO loop 31 prints the real and imaginary parts of

- t8
UL = (2/(koypygey )Ty o

the real and imaginary parts of

and the magnitudes of Ul and U2. Here, Ul is the t component of the
equivalent electric current in the E plane and U2 is the ¢ component
of the equivalent electric current in the H plane when the y compone t

of the incident magnetic field is minus one at the origin.

At the peak of the Jth triangle function, the n=1 term of th:

equivalent magnetic current (59) reduces to

3|

o to - 46
M= 23/ oypagendVyg Be8in 0% (2/oypy gy Vyg Byc08 @ i

DO loop 34 prints the real and imaginary parts of

to

BE) = (2370 ypugy )V

and the real and imaginary parts of
- G $0
U2 = (2/(koypy 54102V

and the magnitudes of B(J) and U2. Here, B(J) is the t co pponent of
the equivalent magnetic current in the H plane and U2 is the ¢ component
of the equivalent magnetic current in the E plane when the x component

of the inc: dent electric field is minus one at the origin.

(¢} ag

Nestad DO loops 35 ard 36 calculate and print 7%? and 7%? of (70).

Inner DO loop 36 accumulates the portion
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of (62) in ET and the portion

SEO2t0 206300 | =t¢to
Rt Rl%l € R

<0676
1 | ]l

B

of (63) in EP. The Wl ard W2 printed in DO loop 35 are respectively

o o
7%3 and j%ﬁ for receiver angle er = (J-1)*n/(NT-1) radians.

Suggested modifications of the main program are:

1) Changing the normalization of the scattering patterns.
For example, one could replace (70) by (69). All scat-

tering patcerns in Part One, Section V are plots of (69).

2) Removing the restriction th:t the values of the input
arguments NP, NPHI, MT. RH, ZH, X, and A of the subroutine
YZ be the same in call statements 38 and 40. This modifi-
cation is indicated by (74).

3) Generalizing from axial plane wave incidence to oblique

plane wave incidence.

The above three modifications can be realized without tampering with

any of the subroutines YZ, PLANE, DECOMP, and SOLVE.

The sample input and output accompanying the listing of the

main program is for the dielectric sphere with ka = 1 and By 4.
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LISTING CF THE MAIN PROGRAM

J/P3M JOB (XXXXyXXXX31452)9*MAUTZ,J JE* yREGION=200K
// EXEC WATFIV
//7G) «SYSIN DD =*
$J0B MAUTZ,TIME=1y PAGES=40
C SUBRCUTINES YZ, PLANE, DECOMP, AND SOLVE ARE CALLED.
COMPLEX YE(T784) ,2E(784)+R(1064) +B(56),YD(T784),2D(784) Y(313 .)
COMPLEX C(56)4sU,Ul4U2,ET4FEP4,CONJG
DIMENS ION RH(161)9ZH(161),X(48)4A(48) s THR(37)4RC(19),IPS(5<)
READ(1,10) NPyNPHI sMT,NT
10 FORMAT(413)
READ(1,11) BKyURRyERy AL P4BET
11 FORMAT(5E14.7)
READ(1412)(RH(I)oI=1,NP)
READ(L,412)(ZH(I),I=1,NP)
12 FORMAT(10F8.4)
READ(l,411)(X(K)K=19 NPHI)
READ(1411){A{K)4K=14NPHI)
WRITE(3,13) NPyNPHI MT,NT
13 FORMAT(®* NP NPHI MT NT*'/{1X.I3,15,213))
WRITE(3,14) BKyURyER ALP,BET
14 FORMAT (7 Xy "BK® 312Xy UR" 412X ,"' ERY y11Xg PALPY 411 Xy*" BET*/(1Xs5F 4a7))
WFITE(3,15)(RH(I)sI=1,4 NP)
15 FURMAT(Y RHY'/(1X,10F8.4))
WRITF(3,16)(ZH(I),I=1,NP)
16 FORMAT(® ZH'/(1X,10F8.4))
WRITE(3,17)(X(K) o K=14NPHI)
17 FORMAT(* X*/(1X45E14.7))
WRITE(3,18)(A(K)K=14NPHI)
18 FCRMAT(* A*/{1X+5E14.7))
DO 19 J=1¢NP
RH(J )=BK%*RH(J)
ZH(J)=BK*ZH(J)
19 (ONTINUE
38 CAL\ YZ(IQNP,NPHI9‘11MT,RH,ZH,XQA1YLQZE)
WRTITE(3420)(YE(I)yI=144),(2F(1),1=1,4)
20 FORMAT (' SOME ELEMENTS OF YE AND ZE*/(1Xs4E14.7))
PI1=3.141593
DT=P I/(NT=1)
DO 21 J=14NT
THF (J)=(Jd=-1)"=DT
21 CONTINUE
N=(NP=-1)/MT~1
39 CALL PLANE(14N¢MT4yNT ¢THR4R)
N2=2*N
N3=3*N
N4 =4 *N
NTN=(NT=1)*N4
no 22 1=14N
J3=1+NTN
E(I)=R(J3)
BOI+N)==R(J3+N)
BLI+N2)==R(J3+N2)
BOI+N3)==R(J3+N2)
RC(ID)=2«/RHIMT%*141)
22 COUNTINUE
WRITFE(3,23)(0(T),0(=1,N2)
22 FOUFMAT (' HALF OF "HE ELEMENTS OF B'/(1Xy4E14.7))
FM= 5QRTIUK*ER)

78




el el

24
40

25

29
28
41
4z

30

22
31

35

DO 24 I=1,NP

RH(I )=EM*RH(I)

ZH(I )=EM%*ZH(I)

CONT INUF

CALL YZ(1sNPgNFHI 91l +MT sRHeZH 34X A4V D4ZD)
WRITE(3,25)(YD(I)sI=194)4(ZD(I)s1I7144)
FCRMAT (* SOME ELEMENTS OF YD AND /'D*/(1X934El14.7))
D=SQRT(UR/FEFR)

ALPD=ALP*D

BETD=BET/D

JY=0

J1=0

DC 26 J=14N2

D 27 I=1,4N

JY=JY+1

Jl1=J1+1

J2=J1+N

YIJIY )=YE(J2)+ALP*YD(J2)
Y(JY+N)==YE (J1 )-ALP*YD(J1)
Y(JY+N2)=ZE(J2)+BETD*ZD(J2)
Y(JY+N3)==ZE(J1)-BETD*ZD(J1l)

CCNTINUE y

JY=JY+N3

J1=J1+N

CONT INUF

J1=0

DO 28 J=14N2

DC 29 I=1,N2

JY=JY+1

Jil=J1+1

Y(JY)=ZE(J1)+ALPD*2D(J 1)
Y(JY+N2)=YE(J1 )+BET*YD(J1)

COK TINUE

JY=JY+N2

CONTINUF

CALL DECCHMP (N4 ,IPS,Y!

CALL SOLVE(N4 sIPSyYsuseC)

WRITE(3,30)

FCRMAT('0 PREAL JT IMAG JT REAL JP IMAG JP

1MAG JP')

U‘—'(Ooylo,

DC 31 J=14N

RE=RC(J)

ET=U*KR

BOJ)=ET*C(J)

J1=J+N

B(J1)=RR*C(J1)
ULl=RR*¥C(J+N2)

U2=ET*C (J+N3)
W1=CABS(Ul)

w2=CABS(U2)

WPITE(3432) Ul,U2,W1,W2
FORMAT(1Xy6E11.4)

CONT INUF

WRITE(3.23)

FOFMAT(*O REAL MT IMAG AT REAL ™MP IMAG MP

1MAC  MP')

DO 34 J=14N
U2=2(J+N)

wl="ABS(B(J)) 79

1AG  JT
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w2=CABS(U2)
WRITE(3432) B(J)sU24Wl W2
34 CONTINUE
WRITE(3,37)
27 FCRMAT(*'C SIGTHETA
CON= .25/P1%%3
JR1=0
D0 35 J=1,4NT
FT=00
Ep=0 .
DO 36 I=1,4N2
JC2=1+N2
JE1=JR1+1
JR2=JR 14N2
FT=FT+F(JR2)*C(I)+R(JR1)*C(JC2)
FP=EP=R(JRL)I*C(I)+R(JR2)%C(JC2)
36 CONTINUE
JE1=JR1+N2
W1=C CN*ET*CONJG(ET)
W2=C CN*EP*CCNJG(EP)
WRITE(2,432) Wl,W2
35 (OCNTINUE

SIGPHI')

sSTCP
END
$DAT A
21 20 219
Cel 00'NN0V0F+01 0.1CO0000F+01 0.4000000£+01 O.!000000E+01l 0.10000COF+01
0. 0000 0.1564 0.2090 0.4540 0.5878 0.7271 0.8090 0.8910 G.S511 0.9877
1. 0000 C.9877 0.9511 0.8910 0.8090 O0.7071 (0.587¢ 0.4540 0.2090 0.1564
0. 0000

-1.0000 -=0.9877 -069511 -0.8910 -0.8090 =0,7071 =0.5878 =0.4540 0.3090 -0.1564

0. 0000 041564 Q.2090 0.4540 0.5878 07071 0.806(C 0.8910 9D.©511 0.9877
1. 0000
-0.9951286F+20-06963GT19E+00-0.9122344F+00-0.83911T70E+0C-0.,746331 5400
-0.63¢052TF+00-0.5108670F+00-0.3737061E+00~0.22T7859E+00-0.7652652F-01
0.765264%2F=01 0.2277859E+00 0.3737061E+00 0.5108670E+CC 0.6360537E+0D
0.7463319F+00 0.8391170E+CO0 0.9122344E+00 0.9639719E+00 0.9931286F+00
0.1761401F-01 0.4C60143E-01 0.626T7205E-01 0.8327674E-01 0.10193C1E+0Q0
0ol 1€ 1945F+00 0.121¢886E+00 061420961E+00 0.1491730E+00 0.1527524E+00
0.1527524E+00 0,1491730E+00 0.1420961F+00 0.1316886E+00 0.1181945E+00
01019301 E+00 08227674501 0.,6267205F-01 0.4060143E-01 0.1761411E-01
$STOP
/*
// 1
£
PRINTED (UTPUT
NP NPHI MT NT
2k 20 - Z2°}s
BK UR ER ALP BET
0.1I3900C0F+01 0.10CC000E+01 04000000%+01 0«1000000E+01 041000000FE+u1l
RH
0. 0000 061564 062090 064540 C.5878 0.7071 0.8910 02.951l1 0.9877
1. 0000 0.9877 0.9511 0.8910 0.8090 0.7071 04540 C.3090 0.1564
0. DCCO
ZH
=1.000C =0.9€77 =0.9511 -0.8910 -0.8090 ~0. 7071 =0.5878 =0.4540 =0.2090 =0.1564%
Ce 0CGO0 C.1564 0,2090 0.4540 (0.5878 0.7071 0.8910 0.9511 0.9877
1. 2000

X

=0.9921286F+#00-0.9629719c+00-0.9122344E+00-0.8391170E+0)-0.746%319€E+00
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—O.t360537F+OG—0.5108670E+00—0.3737061E+OO-0.227785§E*0)—0.7652652E—01
07€¢52652E-01 D.2277859E+00 0.,3737061E+J0 0.51086T70E+ () 0.£360537E+00

0.7463319E+00
A
0.17¢1401E-01 C<4060143E-01 0.6267208E- 1 0. 332T7675E-CL 0.10193 ' 1E+0O
0.1181945F+00 0.121¢886E+C0O 0.1420961E+)0 0..491730E+00 0.15275 34F+00
0e1527524F+ )0 0.1491730E+00 0.1420961E+)0 0.1316886E+00 0.1181¢45E+00
g 0.1019301E+ 'O 0.8227675E-01 0.6267208E-)1 0.4060143E-01 OC.17614C1E-O1
E SOMF FLEMENT: CF YE AND ZE
0.2421891E+01-0.5482869E~02 0.507 '693E+00-0.1154096E-01
0.1015252F+00-0.2041826E-01 0.9173627E-21-0.3066700E-01
0.9008127E=01-0.7025097E+01 0.76C7359E-01 0.1940044E+"1
065597932F-01 0.7892063E+00 0423454T9E-01 0.2816698E+00
HALF (F THE ELEMENTS OF 8
{ -0.5464500E+00-0+7502574E+00-05449371E+00—-0.5690688E+00
—0e4709502F+00-",3229641E+(0-0.2808148E+00-0.1054077E+Q0
0.200000CF+0C- '« 1778790E-CLl 0.2808146E+00-0.1054077E+0Q0
0s47095046-400-0e3229 41E+(CO0 0.54493T70E+00-0.5690¢68€6E+00
] 0.5464507 “+00-0.7502: T6E+00 0.7951685E+00~0.5814634E+00
0.7044444 +00-0.6853¢ 59E+00 0.5376098E+00-'0.8194968E+00
0.29290585+00-0.9327149E+00-0,0000000E+00-0.9769601E+00
-0.2939057E+00-0.922714T7E+00-0.5376099E+00-0.8194970E+00
=0e7044442FE+00-0.685365TE+00-0.7951688E+00-0.5814€636E+00
' SOME ELEMENTS OF YD AND ZD
3 —0.2290969F+01-0.3768066E-01-0,3189305E+00-0.7057631E-01
’ 0.9599513E-01-0s103847TE+00 0.4942125E-01-0.1374627€+00
0.3428959F+00-0.290211TE+01 0.2818084E+00 0.1262741E+01
0.2082631E+00 0.5027283E+00 0.1465860E+00 0.1911734E+00

1e 83911 TOE+00 0.9122344E+Y0 0.9639719E+0 1 0.95931266F+00

i LS A R et i e A Dl £ 2o i b

REAL JT IMAG JT REAL JP IMAG JP MAG JT MAL  JP

-0.6398E+00-0.1395FE+01 0.6170E+00
~0.8349F+400-0.1227E+C1

-0.1025F+01-

0.9274E+0Q0

—0.1127F+0C1-0.4361E+00

-0.1094FE+01
-0.8731E+00
-0.5410F+00

0.5150E-C1
0.58T74E+00
C«1026E+01

0.8652E+00
0.7285E+00
D.6632E+00
0.4185E+00
0.1349E+00
0.1116E+00

0.1415E+01
0.1174E+01
0.9655E+00
0.6917E+00
0.631€E+D0
0.7185E+)0
0.1011E+ 1

—-0.1626E+00 0.1320E+01-0.9319E-01
0.1722E400 061479E+01 0.2244E+00

Ce1256E+01
C.1496E+01

RE AL MT IMAG MT REAL MP IMAG MP
—0.1064E+400-0.68C6E+00-0.8434E-01-0.6963E+00
~0«2223E+00-0.5834F+C0-0.21T6E+00-0.5837E+00
=0e3712F+00-044190E+00-0.1639E+00-0.5138E+00
-0.4731E4+00-0.180SE+C0~-0.1442E+00~-0.4209E+00

-0.5072E+00
-0.4451FE+00
~0.3171E+90
-0.1556F+00
-0.1304F-01

SIGTHETA
0.1535F+00
C.1488F+00
0.1355E+00
0.1153E+00
0.9 112E-01
C.£592E-01
0.4260€-01
0.2343E-01

0«1C93E+00-0.4617E-01-0. 4199E+00
0.3¢92E+C0 0.5351E-01~0.4940F+C0
0.6 GTE+00 0.7013E-01-0.6418E+(0
0.8)02E+00 04127, E+00=0. 7901 E+( D
0.8352E+C0-0.13076-01-0.8971E+0D

SIGPHI
0.1535E+00
0.1523E+00
0.148GF+CO
0.1433E+CO
0.136CE+0O
0.1272E+00
0.1176E+CO
0.1074E+CO
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0.1535E+01
0.1484E+01
0.1382E+01
0.1223E+0)
0.1096E+01
0.1052E+01
0.1160€+01
0.1330E+01
0.1489F+01

MAG MT
0.6889E+00
0.6279E+00
0.5598E+00
0.5065E+00
0.5188E+00
0.5979E+00
0.7140F+00
0.8152:+00
0.8853-+00

0e1943E+C1
O« 145GE+C1
0.1:10E+C1
0.St 82€+00
Ce75 T6E+00
0.7. 11E+00
0.1017E+01
0.1260E+C1
C.1513E+C1

MAG MP
0.7014E+00
0.€230E+CO
0.5393E+CO
Ce444SE+CO
0e4224E+CO
O« 4©69F+C0
0. 6457E+CO
0. 8003E+00
0.8972E+00
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C.9801E-0" 0.G722E-01
0¢2164E-0 . 0.8741E-01
0.1589E-03 0.7831E-Cl1
0.2810E-0." 0.7015E=-01
0.8 790E-0." 0.6308E-C1
0«.1666E-01 0,5717E-01
C.2504E-01 0.5241E-Cl
0.3278F-01 0.4879€-01
0.3895E-01 0.4625E-01
0.42905‘01 0.‘0475E‘01 >
0.4426E-01 0.4426E-01

S e




PART THREE

PROJECT SUMMARY AND RECOMMEND. TIONS

I. SUMMARY OF WORK PERFORMED

The purpose of this project was to inves igate applic tions of
the method of moments to obtain vector solutions of integro- ifferential
equations >f radiation and scattering problems for several types of
boundary conditions. This first required a study of techniques which
apply to the general formulation of natrix solutions to multiple regions
and multiple sources. After the general fcrmulation was complete, the
sclution was to be applied to repres 'ntative problems such as arrays of

cavity-backed and waveguide-fed aper ures.

The first problem was to appl - the techniques to aperture antennas
in conducting bodies of revolution. This involved the use¢ of previously
developed programs for radiation and scattering from conducting bodies of
revolution [14,15]. These programs are a solution to the E-field integra!
equation, and it is known that solutions to this equation are not unique
at certain cavity resonant frequencies [9]. The alternative approach of
using the H-field integral equation also has solutions that are not unic ie
at the same cavity resonant frequencies [9]. One method to obtain an
integral equation which does have unique solutions at the cavity resona t
frequencies is to take a lincar combination of the E-field and H-field
equations [1]. Such a procedure leads to the combined-field integral
equation. However, no computer programs were available for solutions to
the combined-field equation for bodies of revolution, so the first task
was to develop such programs. This resulted in our firs two Interim
Technical Reports [9, 10]. Abstracts of these reports are given ir
Section ITI below.

[14] J. R. Mautz and R. F. Harrington, "Generalized Network Parameters
for Bodies of Revolution,'" Report AFCRL-68-0282, Contract No.
F19628-67-C-0233, Air Force Cambridge Research Laboratories, May 1968.

[15] R. F. Harrington and J. R. Mautz, '""Radiation and Scattering from Bodies
of Revolution," Report AFC L-69-0305, Contract No. F19628-67-C-0233,
Air Force Cambridge Research Laboratories, July 1969.
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Development of the combired-field sol ition for conducting bodies « f
revolution required the evaluati n of hoth tie E-field and the H-field
integral operators. These two operators are also those required to solv:
the problem of electromagnetic scattering by dielectric bodies. Hence,
our next task was to incorporate the computer programs for E-field and
H-field operators into programs for dielectric bodies. The theory of th s
work constitutes Part One of this report. The computer programs and doc i~

mentation of them are given in Part Two of this report.

The next step in the project was to ajply these solutions to the
problem of waveguide-fed and cavity-backed apertures in conducting bodies.
These waveguides and cavities may or may not be dielectr'c filled. Pre-
liminary work for waveguide-fed apertures was given in Report No. 12 of
the preceding project [16]. Application of the theory to arrays of waveguide-
fed and cavity-backed antennas ia conducting planes is given in another two
reports [17,18]. It was planned to use a similar type of solution for ajer-

tures in a conducting body of resolution. This solution would use the computer

programs given in the present report (Part Two) to determine -he apertur:
admittance matrix. However, further work must be done before this solut ion

can be made available.

1I. INTERIM "ECHNICAL REPORTS

huring the project two Interim Technical Reports were written and

publishcd by RADC. Thesc reports and their abstracts are listed below.

1. "H-field, E-fi~1d, and Combined-field Solutions for Bodies of
Revolution," by J. I. Mautz and R. F. Harrington, Interim Technical Report
RADC-TR-77-109, Marca 1977.

[L6] J. R. Mautz and R. F. Harrington, ''Transmission fron a Rectangular
Waveguide into Half Space through a Rectangular Aperture," Report
RADC-TR-76-264, Rome Air Development Center, August 1976.

[17] J. Luzwick and R. F. Harrirgton, "A Reactively Loaded Aperture Antenna
Array," Report TR-76-10, Cintract No. N00014-76-C-0225, Office of Naval
R searcl, September 1976.

[18] J. Luzwick and R. F. Harrington, "A Solution for a Wide Aperture E
Rcactively Loaded Antenna Array," Report TR-77-1, Contract No. N0O00l4-
7¢ -C-0025, Office of Naval Research, January 1977.
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Abstract: H-field, E-field, and combined-field soiutions are
developed for the electric s.irface currert and far scattered fields of
a perfectly conducting body of revolutio: excited by an incident plane
wave. These solutions are obtained by applying the method of moments
to the H-field, E-field, and combired-field integral equations, respec-
tively. The H-field integral equation is obtained by requiring the
tangential magnetic field to be zero just inside the surface S of the
body of revolution. The E-field integral equation is obtained by re- :
quiring the tangential electric field to be ze o on S. The combined
field integral equation is a linear combination of the H-field and E-
field integral equations. Computations show that both the H-field an:.
the E-field solutions deteriorate near internal resonances of the con-

ducting surface S, but that the combined field solution does not.

2. "Computer Programs for H-field, | -field, and Combined-fie'd
Solutions or Bodies of Revolution," by J. K. Mautz and R. F. Harrip jton,
Inte rim Te hnical Report, RADC-TR-77-215, June 1977.

Abstract: A computer program is given to implement the H-fi 1d,
E-field, and Combined-field solutions given in Interim Technical Report
RAD '=TR-77-109 for a perfectly conducting body of revolution excited by
an )blique plane wave incident field  The program consists of several
sub ‘outines and a main program. The main program calculaces thc elec-
tric current on the body of revolution and the bistatic scatterin; cross
section per square wavelength. Some examples of computations are ziven

and discussed.

III. JOURMAL PUBLICATIONS

During the project the following papers on work related to the

project have been published or accepted by technical journals.

1. R. F. Harrington and J. R. Mautz, "A Generalized Network
Formulation for Aperture Problems," IEEE Trans., vol. AP-24, No 6,
November 1976, pp. 870-873.

2. R, F. Harrington and J. R, Mautz, "Electromagnetic
Transmission through an Aperture in a Conducting Plane," AEU, vol. |,

No. 2, February 1977, pp. 81-87.
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3. R. F. Harrington and J. R. Mautz, "Computatior il Methods for
Transmission of Waves through Apertures," to appear in E ectromagnetic

Scattering, edited by P.L.E. Uslenghi, Academic Press, 1977.

"\ Surfiace Formulation for

4. Yu Chang and R. I'. Harrington,
Characteristic Modes of Material Bodies," zccepted for publication in

the IEEE Trancactions on Antennas and Propagation.

5. J. L. Luzwick and R. F. Harrington, "A Reactively Loaded
Aperture Antenna Array,' accepted for pub'ication in the IEEE

Transacitions on Antennas and Propagation.

IV. RECOMMENDATIONS FOR FUTURE WORK

On the basis of results obtained during the present project he

following topics appear promising for future research.

1. A computer program should be developed for computing the
electromagnetic behavior of waveguide-fed and cavity-backed aperctures
in bodies of revolution. The¢ waveguides could be either air filled
or dielectric filled. The program would make use of the matrices

evaluated for dielectric bodies of revolution, appearing in this report.

2. A combined-source solution should be developel for conducting
bodies of revolution, similar o that used by Bolomey ar 1 Tabbara [19]
for two-dimensional scattering problems. The advantage of the combined-
source formulation is that it a:sures uniqueness of the solution for the
E-field (or H-field) at all frequencies. It is probably related to the

combined-field formulation, given in the first Interim Technical Report.

3. Combined-field and combined-source solutions should be in-
vestigated for aperture problems. With the formulation presently used,
the admittance matrix for a cavity problem becomes singular at resonant
frequencies of the cavity. It is felt that a combined-field or cobined-

source formulation would ove “come this difficulty.

[19] J. C. Bolomey and W. Ta bara, "Numerical Aspects on Coupling between
Comple mentary Boundary /alue Problems,'" IEEE Trans., vol. AP-21,
No. 3, May 1973, pp. 356-363.
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4. General programs of the type developed on this project for
bodies of revolution should be developed for other kinds of bodies.

While it is probably too difficult at this time to develop programs

for arbitrarily shaped bodies, it is possible to develop them for othcr

classes of shapes, such as cylinders of arbitrary cross section, either
infinite or finite in length.
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